PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 52

Total Marks: 31

Max. Time: 32 min.

Topic: Chemical Kinetics

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.9

Subjective Questions ('-1' negative marking) Q.5 to Q.10

[27, 27]

(3 marks 3 min.) (4 marks 5 min.)

[4, 5]

1. For a certain reaction the variation of the rate constant with temperature is given by the equation

$$\ln k_t = \ln k_0 + 0.0693 t(t \ge 0^{\circ}C)$$

The value of the temperature coefficient of the reaction rate is, therefore

- (A) 0.1
- (C) 10
- (D) 2

2. The activation energies of two reactions are E_a and E_a ' with $E_a > E_a$ '. If temperature of the reacting systems is increased from T₁ to T₂, predict which of the following alternatives is correct? (Where k'_1 and k'_2 are rate constant at higher temperature).

- (A) $\frac{k_1}{k_1} = \frac{k_2}{k_2}$

- (B) $\frac{\dot{k_1}}{k_4} > \frac{\dot{k_2}}{k_2}$ (C) $\frac{\dot{k_1}}{k_4} < \frac{\dot{k_2}}{k_2}$ (D) $\frac{\dot{k_1}}{k_4} < 2\frac{\dot{k_2}}{k_2}$

Two reactions A \longrightarrow products and B \longrightarrow products have rate constants $k_{_{A}}$ and $k_{_{B}}$ at temperature, T 3. and activation energies E_A and E_B respectively. If $k_A > k_B$ and $E_A < E_B$ and assuming that 'A', pre-exponential factor for both the reactions is same, then.

- (A) at higher temperatures k_B will be greater than k_A
- (B) at lower temperatures $k_{_{\! A}}$ and $k_{_{\! B}}$ will be close to each other in magnitude
- (C) as temperature rises $k_{_{\!A}}$ and $k_{_{\!R}}$ will be close to each other in magnitude.
- (D) at lower temperature $k_{_{\rm B}} > k_{_{\rm A}}$

4. On introduction a catalyst at 500 K, the rate of a first order reaction increases by 1.718 times. If the activation energy in the presence of a catalyst is 4.15 kJ mol⁻¹. Then, the E_a in absence of catalyst is (R = 8.3 MKS)

- (A) 4.15 kJ
- (B) 2.08 kJ
- (C) 2.718 kJ
- (D) 8.3 kJ.

5. What percentage fraction of the molecule will cross over the energy barrier at 1000 K temperature for 18.424 KJ activation energy (R = 8J mol $^{-1}$ K $^{-1}$)

- (A) 10%
- (B) 20%
- (C) 90%
- (D) 80%

6. For the decomposition of HI the following

logarithmic plot is shown : [R = 1.98 cal/mol-K]

The activation energy of the reaction is about

(A) 45600 cal

(B) 13500 cal

(C) 24600 cal

(D) 32300 cal

7.	Decomposition of A follows first order kinetics by the following equation. $4A(g) \longrightarrow B(g) + 2C(g)$
	If initially, total pressure was 800 mm of Hg and after 10 minutes it is found to be 650 mm of Hg. What is
	half-life of A ? (Assume only A is present initially)

- (A) 10 mins
- (B) 5 mins
- (C) 7.5 mins
- (D) 15 mins

8. In a hypothetical reaction,
$$A(aq) \implies 2B(aq) + C(aq)$$
 (1st order decomposition)

'A' is optically active (dextro-rototory) while 'B' and 'C' are optically inactive but 'B' takes part in a titration reaction (fast reaction) with H_2O_2 . Hence, the progress of reaction can be monitored by measuring rotation of plane polarised light or by measuring volume of H_2O_2 consumed in titration.

In an experiment the optical rotation was found to be θ = 40° at t = 20 min and θ = 10° at t = 50 min. from start of the reaction. If the progress would have been monitored by titration method, volume of H_2O_2 consumed at t = 15 min. (from start) is 40 ml then volume of H_2O_2 consumed at t = 60 min will be:

- (A) 60 ml
- (B) 75 ml
- (C) 52.5 ml
- (D) 90 ml

9.
$$S_1$$
: The frequency factor has the same unit as the rate constant, k

- \mathbf{S}_2 : A plot ℓ n rate vs ℓ n C for the nth order reaction gives a straight line with slope –n and intercept k_n
- S₃: The order of a reaction A → product in which half the reagent is reacted in half an hour, three quarters in one hour and seven eighth in one and half hours must be 1(unity).
- **S**₄: The unit of rate constant for a second order reaction will be M⁻¹s⁻¹.(M is representing the molarity of solution)
- (A) TFTT
- (B) TTTT
- (C) FFTT
- (D) TFFT
- 10. The activation energy of $H_2 + I_2 \rightarrow 2HI$, in equilibrium, for forward reaction is 167 kJ mol⁻¹ where as for the reverse reaction is 180 kJ mol⁻¹. The presence of catalyst lowers the activation energy by 80 kJmol⁻¹. Assuming that the reactions are made at 27°C and the frequency factor for forward and backward reactions are 4×10^{-4} and 2×10^{-3} respectively. Calculate K_C .

Given: $e^{13/8.314 \times 0.3} = 183$.

nswer Key

DPP No. #52

1. (D)

2.

7.

(C)

4.

(D) (A)

(A)

6. (A)

(B)

(B)

3.

(B)

10. K = 36.6

nts & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. # 52

1.
$$\frac{k_t}{k_0} = (TC)^{t-0/10}$$

Taking log gives $\log_e k_t - \log_e k_0 = \frac{t}{10} \log_e (TC)$ \Rightarrow In $k_t = \ln k_0 + \left(\frac{\ln (TC)}{10}\right) t$

Comparison indicates $\frac{\ln{(TC)}}{10} = 0.0693$

 \Rightarrow In (TC) = 0.693 \Rightarrow

TC = 2

2.
$$k_1 = Ae^{-Ea/RT_1} & k_2 = Ae^{-Ea'/RT_1}$$

$$k'_{1} = Ae^{-Ea/RT_{2}} \& k'_{2} = Ae^{-Ea'/RT_{2}}$$

$$\Rightarrow \frac{k'_1}{k_1} = e^{\frac{Ea}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)} \qquad \& \qquad \frac{k'_2}{k_2} = e^{\frac{E'a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

$$\frac{\mathbf{k'_2}}{\mathbf{k_2}} = e^{\frac{\mathbf{E'a}}{R} \left(\frac{1}{T_1} \frac{1}{T_2} \right)}$$

Since Ea > E'a

$$\Rightarrow \qquad \frac{k'_1}{k_1} > \frac{k'_2}{k_2}$$

- 3. As temperature increases, K_A & K_B tends to A. So, they are equal in magnitude.
- According to Arrhenius equation 4.

$$k = A \cdot e^{-E_a/RT}$$

At temp., T the equation will be

$$k' = A \cdot e^{-E_{a'}/RT}$$

Given $E_{a}^{'} = 4.15 \text{ kJ mol}^{-1}$

...... in the presence of a catalyst

$$\therefore \frac{k'}{k} =_{e} (E_{a} - E_{a}') / RT$$

Given
$$k' = (1 + 1.718) k = 2.718k = ek$$

Hence
$$e = e^{(E_a - E_a')/RT}$$

or
$$E_a - E_a' = RT$$

or Ea =
$$E_a'$$
 + RT = 4.15 + 8.3 × 500 × 10⁻³ = 8.3 kJ mol⁻¹.

5. Fraction of molecules which cross over the barrier

$$= e^{-\frac{Ea}{RT}} = e^{-\frac{18428}{8 \times 1000}} = e^{-2.303} = e^{-\ln 10} = \frac{1}{10}$$

6.
$$\log k = -\frac{E_a}{2.303 \text{ R}} \frac{1}{T} + \text{constant}$$

$$= -\frac{E_a}{2.303 \text{ R}} \times 10^{-3} \times \frac{10^3}{T} + \text{constant}$$

thus, slope of graph will be
$$-\frac{E_a \times 10^{-3}}{2.303 \text{ R}} = -\frac{4}{0.4}$$

$$\Rightarrow$$
 E_a = 2.303 × 1.98 × 10⁴ = 45600 cal

7.
$$AA(g) \longrightarrow B(g) + 2C(g)$$

$$t = 10 \text{ minutes}, 800 - 4p$$
 p 2p

$$800 - p = 650$$
 .: $p = 150$ Pressure of A = 200, so

$$\therefore$$
 2 x t_{1/2} = 10 minutes \Rightarrow t_{1/2} = 5 minutes
As only A is optically active. So conc. of A at t = 20 min \propto 40°

While concentration of A at t = 50 min
$$\propto$$
 10°

so
$$t_{1/2} = 15$$
 min.

So volume consumed of
$$H_2O_2$$
 at t = 15 min = $t_{1/2}$, is according to 50% production of B. at t = 60 min. production of B = 94.75% (four half lives)

So volume consumed = (40 ml) +
$$\left(\frac{40}{2}\right)$$
 ml + $\left(\frac{40}{4}\right)$ ml + $\left(\frac{40}{8}\right)$ ml = 75 ml ans.

9.
$$S_1 k = Ae^{-Ea/RT}$$

8.

$$S_2$$
 rate = $k_n[C]^n \Rightarrow In rate = In $k_n + n InC$$

$$S_3 A \rightarrow product$$

$$a \xrightarrow{\frac{1}{2}hr} \frac{a}{2} \xrightarrow{\frac{1}{2}hr} \frac{a}{4} \xrightarrow{\frac{1}{2}hr} \frac{a}{8} \Rightarrow l^{st} \text{ order reaction.}$$

10.
$$K_f = A_f e^{-Ea_f/RT}$$
; $K_b = A_b e^{-Ea_b/RT}$.

$$\label{eq:Kc} \mathsf{K}_{c} = \frac{\mathsf{K}_{f}}{\mathsf{K}_{b}} = \frac{\mathsf{A}_{f}}{\mathsf{A}_{b}} \ \mathsf{e}^{-(\mathsf{Ea}_{f} - \mathsf{Ea}_{b})/\mathsf{RT}}.$$

$$K_C = \frac{4 \times 10^{-4}}{2 \times 10^{-3}} e^{-(167000 - 180000)/8.314 \times 300}$$

$$K_c = 2 \times 10^{-1} \times 183 = 36.6.$$

